Module3/Lesson1
Module 3 : Analysis of Strain

3.1.1 INTRODUCTION

o define normal strain, refer to the following Figure 3.1 where line AB of an axially
loaded member has suffered deformation to become A'B’.
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Figure 3.1 Axially loaded bar

The length of AB is Ax. As shown in Figure 3.1(b), points A and B have each been displaced,
i.e., at point A an amount u, and at point B an amount u+ Au. Point B has been displaced by
an amount Au in addition to displacement of point A, and the length Ax has been increased
by Au. Now, normal strain may be defined as

. Au du
= lim—=

8 PR
Ax—0 AX dx

(3.0)

X

In view of the limiting process, the above represents the strain at a point. Therefore "Strain

is a measure of relative change in length, or change in shape".
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3.1.2 TYPESOF STRAIN
Strain may be classified into direct and shear strain.
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Figure 3.2 Types of strains
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Figure 3.2(a), 3.2(b), 3.2(c), 3.2(d) represent one-dimensional, two-dimensional,
three-dimensional and shear strains respectively.

In case of two-dimensional strain, two normal or longitudinal strains are given by

ou ov
< == 3.1
OX & oy (1)

+ ve sign applies to elongation; —ve sign, to contraction.

&

Now, consider the change experienced by right angle DAB in the Figure 3.2 (d). The total
angular change of angle DAB between lines in the X and Yy directions, is defined as the
shearing strain and denoted by .
ou ov
Vg =0+ Qy = g + &
The shear strain is positive when the right angle between two positive axes decreases
otherwise the shear strain is negative.

(3.2)

In case of a three-dimensional element, a prism with sides dx, dy, dz as shown in Figure
3.2(c) the following are the normal and shearing strains:

v _ow

gx—ﬁx,gyza,a‘z:g (3.3
ou ov ov  ow ow du

Pyt T a T w a

The remaining components of shearing strain are similarly related:

Yoy Vo V=V Vx = 7Vx (3.4)
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3.1.3 DEFORMATION OF AN INFINITESIMAL LINE ELEMENT

- <

Figure 3.3 Line element in undeformed and deformed body

Consider an infinitesimal line element PQ in the undeformed geometry of a medium as
shown in the Figure 3.3. When the body undergoes deformation, the line element PQ passes
into the line element P'Q’. In general, both the length and the direction of PQ are changed.

Let the co-ordinates of P and Q before deformation be (x, Y, z), (x +AX, Yy +AY,Z+ Az)
respectively and the displacement vector at point P have components (U, v, W).

The co-ordinates of P, P"and Q are
P:(x,y,2)

P :(X+U,y+V,z+W)
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Q:(x+AX,y+Ay,z+Az)

The displacement components at Q differ slightly from those at point P since Q is away
from P by AX,Ay and Az.

. The displacements at Q are
U+ Au,v+Avand w+ Aw
Now, if Q is very close to P, then to the first order approximation

ou ou ou

A=A+ Yy Hag @)
OX oy 0z
similarly, Av = ax+ Y ay + X Az (b)
OX oy 0z
And Aw = A+ MW Ay + W a; ©)
OX oy 0z

The co-ordinates of Q'are, therefore,
Q'(X+AX+U+AU, Y+ Ay +V + AV, Z + AZ + W+ AW)
Before deformation, the segment PQ had components Ax, Ay and Az along the three axes.

After deformation, the segment P'Q’ has components AX + U, Ay +Vvand Az + w along the
three axes.

.. ou ou ou . ) . .
Here the terms like —,—and — etc. are important in the analysis of strain. These are the
Z

ox oy

gradients of the displacement components in X, y and z directions. These can be represented
in the form of a matrix called the displacement-gradient matrix such as

ou ou ou
ox oy oz
||
[8XJ}_8X oy oz
o oW ow
| OX oy oz |
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3.1.4 CHANGE IN LENGTH OF A LINEAR ELEMENT

When the body undergoes deformation, it causes a point P(X, Yy, z) in the body under
consideration to be displaced to a new position P’ with co-ordinates (X+U,Yy+V,Z+w)
where U, v and w are the displacement components. Also, a neighbouring point Q with co-
ordinates (X +AX, Y+ Ay, Z+ Az) gets displaced to Q'with new co-ordinates
(X+AX+U+AU, Y +AY +V+AV, 2+ AZ + W+ AW).

Now, let AS be the length of the line element PQ with its components (Ax, Ay, Az).
~(AS) =(PQ) = (Ax) +(Ay) +(Az)

Similarly, AS'be the length P'Q’ with its components

(AX' = AX + Au, Ay’ = Ay + AV, A7’ = A7 + Aw)

~(AS') =(P'Q') = (Ax+ Au) +(Ay + AV) +(Az + Aw)’

From equations (a), (b) and (c),

AX' = [1+a—uij +a—uAy +6—UAZ
OX oy 0z

Ay’ :@Ax+ 1+@ Ay+@Az
OX oy 0z

AZ' = @Ax + @Ay + [1+@JAZ
OX oy 0z
Taking the difference between (AS’)*and (AS)”, we get
(PQ) -(PQ)" =(aS')" ~(aS)’
H(ax)? + (ay? +(az'7 )~ (ax)? + (ay) + (az)?)
= 2(s, AX? +&,AY? +6,A2% + &, AXAY + &, AYAZ + £, AXAZ ) (3.5)

where

S BREEH]
ox 2|\ ox OX OX

Applied Elasticity for Engineers T.G.Sitharam & L.GovindaRaju



PN
+_
oy

(2

1l(auY (ov) (ow)
g, = += = +|—| +|—
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oV AU Gudu VOV oW ow |
gxy:gyx: - -
|OX 0y OXxoy oOxoy OX oy |
[ow ov ouou vev owow |
gyz:gzy: - — -
|0y 0z oyor oyor oy oz |
[ou ow oudu dvov  Ow ow |
Ep=E,=|—mt+t—+——F+——F"+——
|0z OX 0z 0OX 0z0X 01 OX |
Now, introducing the notation
AS'—AS
SPQZ—
AS
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(3.5h)

(3.5¢)

(3.50)

(3.5€)

(3.5)

which is called the relative extension of point P in the direction of point Q, now,

(as')" —(aS)"

' 2
+(As ~AS)

2

AS'—AS
AS

2(AS Y

_ [gPQ 2o )2}(As i
= &pg [1+%5PQ}(AS)Z

From Equation (3.5), substituting for (AS')* —(AS)*, we get

jws)z

Epg (1+ %gPQ )(AS)Z =&, (AX)" +¢&,(Ay) +&,(Az) + &, AXAY + £,,AYAZ + £, AXAZ

If I, m, and n are the direction cosines of PQ, then

AX
l=—, m=
AS

Ay
AS

AZ
n=—
AS

Substituting these quantities in the above expression,

1
EPQ(1+ESPQ =g l? +gym2 +g,n? +eylm+e,mn+e, nl

The above equation gives the value of the relative displacement at point P in the direction
PQ with direction cosines |, m and n.
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3.1.5 CHANGE IN LENGTH OF A LINEAR ELEMENT-LINEAR
COMPONENTS

It can be observed from the Equation (3.5a), (3.5b) and (3.5¢) that they contain linear

: ou ov ow . .
terms like —,—,—,————=etc.,as  well as  non-linear  terms like
oX oy oz
2
(6_uj \ 6_u8_u ,————¢etc. If the deformation imposed on the body is small, the terms
OX OX oy

. ou ov ]
like 8_'5’&0 are extremely small so that their squares and products can be neglected.
X

Hence retaining only linear terms, the linear strain at point P in the direction PQ can be
obtained as below.

8X=a—u, 8y=@, 82=@ (3.6)
OX oy oz
ou ov ov ow ow odu

7/Xy:_+—, 7/yZ:—+—, yZX:_+_ (366.)
oy OX oz oy oX oz

and &pq = &pg = g I’ +gym2 +e,n’ +7, Im+y, mn+y, nl (3.6b)

If however, the line element is parallel to x axis, then | =1, m = 0, n = 0 and the linear
strain is

e e = ou
PQ X 8X
Similarly, for element parallel to y axis, then | =0, m =1, n = 0 and the linear strain is
e e ov
PQ — %y T A,
oy
and for element parallel to z axis, then | =0, m = 0, n = 1 and the linear strain is
Epy =&, = ow
PQ z 82

The relations expressed by equations (3.6) and (3.6a) are known as the strain displacement
relations of Cauchy.

3.1.6 STRAIN TENSOR

Just as the state of stress at a point is described by a nine-term array, the strain can be
represented tensorially as below:
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gy=t| QU i
To2lex;  ox

] (,i1=%Y,2) (3.7)

The factor 1/2 in the above Equation (3.7) facilitates the representation of the strain
transformation equations in indicial notation. The longitudinal strains are obtained when

i = J; the shearing strains are obtained when i #jand ¢; = ¢;;.

It is clear from the Equations (3.2) and (3.3) that

1 1
gxy = E 7xy ) gyz = E yyz v Exa = E Vxz (38)

Therefore the strain tensor (&; = &;i ) is given by

e 1,01
. X 2 Yy %}/xz
&j = Eyyx &y Eyyz (3.9)
R
_2 Y x 27/zy z ]

3.1.7 STRAIN TRANSFORMATION

If the displacement components U, v and W at a point are represented in terms of known
functions of X, y and z respectively in cartesian co-ordinates, then the six strain components
can be determined by using the strain-displacement relations given below.

ou ov ow
SXZ_’ &< =—, gzz—
OX ooy oz
ou ov oV oW ow ou
7/xy:_+_’ 7yz:_+_and Yo =+t
oy oX oz oy ox 0z

If at the same point, the strain components with reference to another set of co-ordinates axes
X', y" and Zz'are desired, then they can be calculated using the concepts of axis

transformation and the corresponding direction cosines. It is to be noted that the
above equations are valid for any system of orthogonal co-ordinate axes irrespective
of their orientations.

Hence
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ou ov ow
(_C"X, = ) &< =—, gZ' =
6X! y ayf 62!
_ou  ov oV ow ow ou

wE ey Yy =t —\ Vg =—
Ty Sy Tt T T Ty T T o

Thus, the transformation of strains from one co-ordinate system to another can be written in
matrix form as below:

Ey ihy EVW &y lhy lyxz

. 2 % L, m n . 2 % L
P £y V| = [, m, n,|x e €, 57 x[m, m, m,
1 1 l,b, my n, 1 1 n n, n,
_Eyz'x' Ehy &y | _EVZX Eyzy g, |

In general, [¢'] =[a][¢][a]'

3.1.8 SPHERICAL AND DEVIATORIAL STRAIN TENSORS

Like the stress tensor, the strain tensor is also divided into two parts, the spherical and the
deviatorial as,

E=E"+FE'
e 0 O
where E"= |0 e 0| = spherical strain (3.10)
0 0 e
(gx - e) gxy €x
E'=| &, (,-€) ¢, = deviatorial strain (3.11)
Ex 8xy (82 - e)
g +e, +e,
and e= 3

It is noted that the spherical component E” produces only volume changes without any
change of shape while the deviatorial component E’ produces distortion or change of shape.
These components are extensively used in theories of failure and are sometimes known as

"dilatation” and "distortion" components.

10
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3.1.9 PRINCIPAL STRAINS - STRAIN INVARIANTS

During the discussion of the state of stress at a point, it was stated that at any point in a
continuum there exists three mutually orthogonal planes, known as Principal planes, on
which there are no shear stresses.

Similar to that, planes exist on which there are no shear strains and only normal strains
occur. These planes are termed as principal planes and the corresponding strains are known
as Principal strains. The Principal strains can be obtained by first determining the three
mutually perpendicular directions along which the normal strains have stationary values.
Hence, for this purpose, the normal strains given by Equation (3.6b) can be used.

ie., gPQ = gXIZ +8ym2 +gzn2 +7/Xy|m+yyzmn+j/zxn|

As the values of I, m and n change, one can get different values for the strain Epg -

Therefore, to find the maximum or minimum values of strain, we are required to equate

88PQ 88PQ 88PQ ) . L
oA om 6 to zero, if I, m and n were all independent. But, one of the direction
m n

cosines is not independent, since they are related by the relation.

1?+m?+n®=1
Now, taking | and m as independent and differentiating with respect to | and m, we get

2l +2n@=0
ol

(3.12)

2m+2n@:0

om

Now differentiating &, with respect to | and m for an extremum, we get

on

p (I;/ZX +my,, + 2ngz)

0=2l¢g, + my,, +Ny, +
on

0= ngy + I;/Xy +ny,, +8—(|}/ZX +Mmy,, + anz)
m

n n
Substituting for 2—| and S— from Equation 3.12, we get
m

g, +my,, +ny,  ly, +my, +2ng,

I n

11
Applied Elasticity for Engineers T.G.Sitharam & L.GovindaRaju



Module3/Lessonl

2me, +ly,, +ny,, ly,+my, +2ne,

m n
Denoting the right hand expression in the above two equations by 2¢,
2¢ I+y ,m+y,,n-2¢l=0
Yol +2e,m+y, n-2em=0 (3.12a)
and y, I +y,m+2e,n-2en=0
Using equation (3.12a), we can obtain the values of |, m and n which determine the direction

along which the relative extension is an extremum. Now, multiplying the first Equation by I,
the second by m and the third by n, and adding them,

We get

Z(gxl re,mP+e,n’ +y Im+y, mn+ yzxnl) = Zg(l +m’ + n2) (3.12b)
Here &, = &l 2+ gym2 +e,n” + Yylm+y,mn+y,nl

1> +m?+n®=1

Hence Equation (3.12b) can be written as

Epg =&

which means that in Equation (3.12a), the values of |, m and n determine the direction along

which the relative extension is an extremum and also, the value of & is equal to this
extremum. Hence Equation (3.12a) can be written as

X

(e, —¢)l +%;/Xym +1;/XZn =0

2
%yyxl +(gy —g)m +%7/yzn =0 (3.12c)
1 1
=y d+=y,m+(e,—€)n=0
SVl +57ym+ (e, —¢)
Denoting,
1 1 1
E}/xy = gxy’ E}/yz = gyz’ E}/zx =&y then

Equation (3.12c) can be written as

12
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(6, —&)+eym+e,,n=0

e, +(e, —&)m+e,n=0 (3.12d)
gyl +e,m+(e,—€)n=0

The above set of equations is homogenous in I, m and n. In order to obtain a nontrivial

solution of the directions I, m and n from Equation (3.12d), the determinant of the
co-efficients should be zero.

(8x _8) €y €y
e, | &y (gy - s) &, | =0
€ gzy (gz —-&

Expanding the determinant of the co-efficients, we get
-2 +3,6-J,=0 (3.12¢)

where
Ji=¢,+¢, +¢,

g, € g g, &
X X z

Jz — y + y y + z X
Ex &yl |8y & |6n &
&y gxy €y

=l &, ¢,
En gzy g,

We can also write as

Ji=¢e,+e, +¢g

J. = 1( 2 2 2)
2 _gxgy +gygz +&,&, _Z yxy +7/yz 7V

1 2 2 2
‘]3 = gxgygz +Z(yxy?/yzyzx _gxyyz —& Vi _gzyxy)
Hence the three roots &;,&, and ¢, of the cubic Equation (3.12e) are known as the
principal strains and J;, J, and J; are termed as first invariant, second invariant and third

invariant of strains, respectively.

Invariants of Strain Tensor
These are easily found out by utilizing the perfect correspondence of the components of
strain tensor &; with those of the stress tensor 7. The three invariants of the strain are:

13
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h=+g+g (3.13)
1
=& gt g gtas " (yfy + ;/SZ + ;/ZZX) (3.14)
1
‘]3 =&g et Z (?/xy?/yz?/zx - gxyjz - gyyzzx - gzyfy) (315)

3.1.10 OCTAHEDRAL STRAINS

The strains acting on a plane which is equally inclined to the three co-ordinate axes are
known as octahedral strains. The direction cosines of the normal to the octahedral plane are,
11t 1

The normal octahedral strain is:

(&)oct = &1 P+ gm*+ gn?

2o (En)oct :% (a+a+8) (3.16)
Resultant octahedral strain = (gk)oct =/ (2,1 > + (£,m)* + (50’
= \/%(812 +el + sf) (3.17)
Octahedral shear strain = 7, = %\/(51 &) +(g,—&5)" +(g,—¢)° (3.18)
14
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